Vol. 11 No. 2 ACTA METEOROLOGICA SINICA 1997

FURTHER STUDY ON THE PROPERTIES OF OPERATORS
OF ATMOSPHERIC EQUATIONS AND THE
EXISTENCE OF ATTRACTOR"

Li Jianping (ZF#F) and Chou Jifan (HA7E)
Department of Atmospheric Sciences., Lanzhou University, Lanzhou 730000

Received April 18, 1996: revised September 11, 1996

ABSTRACT

The equivalent operator equation is derived from the full primitive nonlinear equations of the
atmospheric motion and the properties and physical senses of the operators are studied. In the
infinite dimensional Hilbert space, the global asymptotic behavior of the atmosphere system with
the non-stationary external forcing is studied under the assumption of the bounded external
forcing. The existence theorems of the global absorbing set and the global attractor are obtained.
Thus, the conclusions deduced from the large-scale atmosphere (Li and Chou 1996 a: 1996 b) are
extended to the general atmosphere.
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I. INTRODUCTION

The atmosphere is a forced dissipative open system. The most basic physical
characteristics of its long-range process are the diabatic and the dissipative, namely, the
energy supplement and the energy dissipation. The atmospheric motion can be maintained
because of the continuous energy exchange between the exterior of the atmosphere and the
interior of the atmosphere. Therefore. it is not suitable to discuss the long-range weather
process by using the equations with adiabatic approximation and omitting friction.

Based on the equations of large-scale atmospheric motion with the external forcing
and dissipation. Chou (1983; 1986;: 1990) deduced the corresponding operator equation
and discussed the properties of operators. He concluded that the atmosphere system has
the characteristic in the decay of the effect of initial field. Afterwards, under the
stationary forcing (Wang et al. 1989: Lions et al. 1992) and the non-stationary forcing (Li
and Chou 1996 a: 1996 b), the existence of the attractor for the equations of large-scale
atmosphere was proved and some significant results were obtained. Additionally, Lions et
al. (1992) also estimated the Housdoff dimension of the attractor.

To sum up. all of the above studies have been carried out based on the large-scale
atmospheric motion and adopted quasi-hydrostatic approximation. Apparently, the
atmosphere is a multi-scale motion system that does not confine to large-scale motion.
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Although the quasi-hydrostatic approximation is satisfied with high accuracy in the vertical
of the atmosphere, it is after all a simplification of equation of vertical motion. Strictly
speaking, the primitive form of the equation of atmospheric motion in the vertical is not
the equation of static equilibrium. Then, whether or not the conclusions mentioned above
are true for the full primitive equations without the simplifications of large-scale and quasi-
hydrostatic approximation is still a problem. Evidently, it is worthy of further work. This
paper will present a theoretical attempt of making an approach to it.

1I. BASIC EQUATIONS

In the spherical coordinate system (4, 8, r; ) (A1is the longitude, @ the colatitude. r
the geocentric distance), the full primitive equations of the atmosphere can be written as
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= Fsin? A X
v=p/p,
¢ is the molecular viscosity coefficient, € the diabatic heating, all other notations are as
usual meteorologically.

The domain of solutions of Egs. (1) — (5) is 2= S*X @, r) with 0<lr,<r..<<oo.
Here r.=r, A, 0 is the distance between the surface of the earth at the longitude of A and
the colatitude of @ and the geocentric, r.. is a certain large number. The boundary value
conditions are given below.

On the earth’s surface »=r,.
(VA‘!V39Vr) =0, (6)
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L e =T 0
-

If we consider orographic effect, Eq. (6) should be rewritten as

d

E(Vryvﬂ) — 09

V; 3 " V@ a r, '

rsinf dX ' r, 36" 6"
In this paper, the conclusions got by Eq. (6) or Eq. (6') are the same. T.,=T. (X 0:#) in
Eq. (7) is the temperature on the earth’s surface, «, is a positive constant related to
turbulent thermal conductivity, «,€ L™ (S? NR..

On the upper surface of the atmosphere r=r..,
P(st Vﬁ, ij-y ¢; T) — 0,

Vr=V’u g Vhrs=

i(VAsVe) - 0: Vr ) 0»
ar

(8)
ar
el
where &= gr,
The initial values are
VisVas Vs 03 T) |imo = (VE2,VE0, VO, 0@  TO), (9)

III. OPERATOR EQUATION

Introducing the following vector function
‘P: (Vlsvﬂ!vr!;!T)’r (10)
where the sign " denotes transposition, (V;,V,,V,,0,T) =p* (V;,V; V!,V &,T"*),

Vi=Vi/V2,Ve"=Vy/ V2,V," =V,/ V2,0 =V, T =+CT, then Egs.
(1) — (5) (field of turbulent mean flow) can be written as the following equivalent
operator equation:

L N + L= é@, an
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0 0 — g/ V2D £ 0
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5

where &, (i = A 0,7) the turbulent viscosity coefficient, and K, (i = A, 0, ) the turbulent
thermal conductivity.
The initial value may be written as

Plimo = G- (12)
The boundary value conditions are the same as mentioned before.

IV. PROPERTIES AND SENSES OF THE OPERATORS
Let H, (2 be the complete space with the inner product and the norm as follows:
T = 2x . ’
(@,n) = J. o' dl = j JJ @' @risinfdAdodr, (13)
n T 0J 0

ez = (o, "7, 14
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Y o= ?;A,?,-,,,V',-,,ﬁ,-,T.-)’ » i=1,2. Hy,(£2) is a Hilbert space. Let N* (@) and L* () be
the adjoint operators of N(¢) and L(¢) respectively,

Property 1.
N(p) =— N*"(p), (15
L(p) = L" (). (16)
We call L () the positive definite self-adjoint operator, and N (¢) the anti-adjoint
operator.
Property 2. L (¢) is symmetric, N (¢) is anti-symmetric, i.e. .
(@, L(9)e) = (L@ @), an
(@, N@eg) =— (N@g,p), (18)
Vo a.eeEH, (.
Property 3.
(o, L(pp) =0, 19
(g, N(g)e) = 0, (20)

YV ¢ a€H,. The equality in Eq. (19) is true if and only if [l¢|l,=0.
Property 4.

(p, L(p)p) = <¢,E¢), @D
where
d’ = (V; 9Vﬂ‘ ?Vr' no’ 9Tl )! ]
M 95 A5 ¢ 95 __ K 95
3rsind 9 /121 ro—1 3rsind 9 Agz 3rsind 9 Ala 0 0
_ K 95 N &9
7 3r 90" 396 — #A—1 3r 973 0 0
N — £ 9, — £ 9, — £ a1 0 o]
3 2.1 3 272 3 9,0 H
0 0 0 0
0 0 0 0 — 1

L=bhLe, 1, =Lp", I, =Lp",
l=p"lp*, I;= P lsp”.
Let ||+]| be the norms in L2 ({2), then

lplle = CUVHIE 4+ IVSll2 + 17,012 + lIplI2 + 172> 2. (22)
In H, (), we can use the following equivalent norm
Igllo = CAVAllE + IVall2 + V012 4 [0 |12 + |IT||2) V2. (23)
Let
lplo = VL2 + (IVoll2 + 17,02 + [IT)12) 2. (24)
Let H, () be the complete space with the norm
gl = Vi i + IVl + IV I3 + ot |2 + 17 1202, (25)

where ¢ = (Vi Vi, V), p*, T*)", ||+|l; takes H' () -norm. Here H' (£2) is the standard
Sobolev space. And let
¢l = Vil + IVl + ||V

According to the law of conservation of mass

oA T [l5)M2. (26)
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Lpdﬂ — M, = const. , @n
we have
Lemma 1. There exists constant C>0 such that
lell; << Cliglls (28)
lold < Cl¢li, (29)

Vo=V, Vo V.0.T), ¢= (Vi Vi V!, p".T") € Hy(Q) .
Lemma 2. There exists constant C;>0 such that
Cilgl: < g, (30)
V Sb = (V; 9V:; vV: !P. !T' )'f € H] (n) .

The operator L (¢) represents dissipative effect in the equation. According to Eq. (16)
and Eq. (19). the positive definite self-adjoint property of L (¢) shows that due to the
effect of dissipation the energy always dissipates. Equations (15) and (20) show that the
operator N (¢) makes no contribution to the total energy and this is independent of the
property of the function ¢ The anti-adjoint property of N (¢) indicates the important
physical essence that the advection effect. the spherical effect of the earth, the Coriolis
force and the gravitation etc. do not change the total energy.

The above discussions show that Eq. (11) deduced from the equations of atmospheric
motion reflects in concentration the dissipative property of the atmospheric motion with
the external forcing. Under the adiabatic and the non-frictional, there is the conservation
of energy

dy e _
dt"‘?’"o =0, (31)

namely

2 2 2
lellz = L{ V*_JFI;L"'_V*' o C.,T) pd{2 = const. (32)

V. EXISTENCE OF ATTRACTOR

Theorem 1. Any solution ¢ of Egs. (11) and (12) satisfies

lpe) 1§ + zclfou?;o(c) Lhde < Nl llE + zj;(E(qo,:),qo(t))dc, t€[0,T],a e (33)
where C, is given by Eq. (30), K=diag (1/p"*.1/p".1/p". 1/V®.1/p").

Furthermore, according to Lemmas 1. 2 and the Gronwall inequality, we have
Theorem 2. Any solution ¢ of Egs. (11) and (12) satisfies

Iolls < (llls + 2] 7CCo + 18 Dt} £ € [0,T7, 30

where C and C,, are the positive constants, [{(2)| = L{ [e(®) | + |CxaT,(2)]|}df.

Equation (34) implies that the atmosphere system has the characteristic in the decay
of the effect of initial field. The long-range evolution of the system is dependent on the
variation of the external forcing. In reality, the external forcing should be the bounded,
namely, we can have the following assumption

0 IE@W) | <M < o0, (35)
Thus we get
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Iells < llglize® + MQ — e, (36)
where M=2(C,,+M) /C.
Theorem 3. Under the assumption of Eq. (35), the solutions of Egs. (11) and (12)
satisfy, and there exists a bounded absorbing set Bk such that
(1) if @€ Bx, then ¢(z) € Bx for Y t=>0;
() if @& Bk. then there exists a 7>>0 such that ¢(z) € B for V r>r.
Proof. Let
By = {p= (V,,V,,V.,0,T) € H,(D ||l <K}, (37)
where K> M.
If @€ Bk, then
lal < K.
Using Eq. (36) we have
loll} < Ke™® + M1 — e ™) < K.
So we get ¢(t) € Bx for Y t=0.
If @& Bx, then

lwlls > K.
Let
_1, lnll—M
T = ln m—. (38)
When VY 127, by use of Eq. (36) we obtain
K—M &~ K—M
P Tl |12 + M — = K.
"%"0 == ”%"g S M“%”o "‘I' (1 "%"g - )

So we have @) € Bx. The proof is complete.

Theorem 3 shows that all solutions of (11) and (12) will runs into the global
absorbing set Bx. Once the solution runs into By, it will stay in it forever and not run
away from it. The state denoted by points outside of the By has only transient sense, The
long-range behavior of the system will only depend on the bounded sphere.

Equations (11) and (12) define the continuous mapping S @) : H,—H, such that S ¢)
@w=p@) . We define

SR = {S@Ww|Vw € RC H,). 39
It is easy to see that S () is a semigroup.
We define
A= TUS®B. (40)
S=0 =S

Then we have

Theorem 4. The set A satisfies

(1> A is a bounded set in H,;

(2) A is a functional invariant set of the semigroup S ) ;

(3) There exists open neighborhood U of A such that for any @ €U one has S @) g—

A as t—>o0;

(4) A uniformly attracts the set Bg:

(5) A is a global attractor of the semigroup S ().

The theorem 4 shows that the atmosphere system will trend towards the global
attractor A as the time ¢—oco; that is to say, the asymptotic behavior of its solutions
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shows itself on the structure of attractor. The attractor A represents tl = final state of the
system. We call it the atmosphere attractor. Therefore, the results deduced from the
large-scale atmosphere (Wang et al. 1989; Lions et al. 1992; Li and Chou 1996 a;: 1996
b) are extended to the general atmosphere.

VI. SUMMARY

In this paper, based on the full primitive equations of the atmosphere, the equivalent
operator equation (11) is derived. which reflects in concentration the dissipative property
of the atmospheric motion under the thermal forcing and implies the characteristics of
decay of the effect of initial field and nonlinear adjustment of system to the external
forcing. Under the basic functional space, the properties and physical senses of the
operators are discussed, and it is revealed that the characteristics of long-range motion of
system are dependent on the energy dissipation and the energy supplement.

According to the operator equation and the properties of the operators. the existence
theorem of the atmosphere attractor under the assumption of the bounded external forcing
is given. This shows that all states of the atmosphere system will trend towards the global
attractor A as the time increases, and that the global attractor A is just the final set of
system as t—>oo, The characteristics of long-range evolution of the system is implied in the
global attractor A. There can be many domains of attraction in the final set and every
domain has its own characteristic. It is helpful for catching hold of the long-range
evolution of the system to have a clear understanding of the following problems: How can
one carry out the effective macroscopic description for the final set of system? How can one
get the varied characteristics of the attractor and the distribution situation of attraction
domains under the concrete external forcing? etc. These problems await intensive study.
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